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Key Points: 12 

● Dynamic subduction models capture feedbacks between thermal state, mantle 13 

wedge serpentinization, interface weakening, and plate speeds. 14 

● Sediment lubricates the plate interface indirectly by providing water that reacts with 15 

the mantle wedge to produce weak serpentinite. 16 

● Serpentinization promotes faster plate speeds, especially after early subduction and 17 

sufficient serpentinite accumulation.  18 



Abstract 19 

During subduction, the downgoing oceanic crust is exposed to high temperatures in 20 

the mantle wedge, causing volatile-bearing minerals to break down and release hydrous 21 

fluids into the forearc. These fluids percolate upwards, reacting with the mantle wedge to 22 

form hydrated ultramafic lithologies, including serpentinite. To accurately track the fate and 23 

impact of water on the forearc, we develop time-dependent models that self-consistently 24 

capture both serpentinite ingrowth and the associated rheological weakening of the plate 25 

interface. Unlike many subduction models that investigate forearc serpentinization that 26 

prescribe plate velocities, geometries, or steady-state conditions, our approach allows 27 

plates to evolve dynamically without predefined velocities or geometries. During subduction 28 

infancy, serpentinite accumulates rapidly. As subduction matures, serpentinite ingrowth 29 

decreases, and more serpentinite is also dragged downwards by the slab. To elucidate links 30 

between subduction dynamics and serpentinization, we consider variations in serpentinite 31 

strength and hydration state of the incoming plate. Subducting fully water-saturated 32 

sediments yields ∼ 3× greater forearc serpentinite than within the moderately hydrated 33 

reference case. This produces a weaker interface and, in turn, subduction zone convergence 34 

rates that are ∼ 40% higher than in an endmember case with anhydrous sediment. A lower 35 

serpentinite strength also produces higher convergence rates, despite more downdragging 36 

of serpentinite from the forearc. We find that hydrous sediments not only lubricate the 37 

interface directly by weakening it, as previously suggested, but also by dehydrating and 38 

releasing water that produces weak serpentinite in the mantle wedge, with such feedbacks 39 

only able to be captured within fully coupled dynamic models. 40 

Plain Language Summary 41 

We develop and analyze computer models of subduction where plate forces and 42 

speeds can change freely and where water movement is tracked. Water moving upwards 43 

from the plate interface during subduction forms weak rocks called serpentinites. We find 44 

these weak serpentinites can lubricate the interface between plates and speed up 45 

subduction over time. This is also important because previous research proposed that 46 

sediments may change subduction speeds. Instead, sediments release water that is needed 47 

for weak serpentinites to form that could also lubricate the interfaces of subducting plates. 48 



1 Introduction 49 

The mechanical and compositional properties of the plate interface underpin a range 50 

of subduction behaviors, including deformation (Shreve & Cloos, 1986; Behr & Bürgmann, 51 

2021), rock exhumation (Gerya et al., 2002; Agard et al., 2018), deep mantle hydration 52 

(Rüpke et al., 2004; Faccenda et al., 2012; Magni et al., 2014), and volatile budgets in the 53 

mantle wedge (Ito et al., 1983; Schmidt & Poli 1998; Iwamori, 2007; Hacker, 2008; van 54 

Keken et al., 2011). Volatiles are liberated from the downgoing plate, migrate upwards, and, 55 

depending on the fluid composition and pressure-temperature (P-T) conditions, may be 56 

bound in weak hydrous lithologies, such as serpentinite (Peacock, 1990; Hyndman & 57 

Peacock, 2003; Abers et al., 2017; Epstein et al., 2024). Moreover, subduction zones are 58 

dynamic systems, and therefore both P-T conditions and associated fluid release and 59 

storage change over time. To investigate these interrelated processes, we develop 60 

numerical subduction models to estimate the impacts of dehydration and/or hydration 61 

patterns on large-scale subduction zone evolution. 62 

Previous studies have made strides in predicting slab water release and mantle 63 

wedge hydration by coupling the thermal fields from time-invariant, kinematically driven 64 

subduction models—characterized by fixed slab dips and convergence rates—with 65 

metamorphic phase equilibria calculations (Hyndman & Peacock, 2003; Hacker, 2008; van 66 

Keken et al., 2011; Abers et al., 2017). However, both geological (Platt, 1975; Cloos, 1985; 67 

Agard et al., 2018; Dragovic et al., 2020) and numerical studies (Peacock, 1990; Molnar & 68 

England, 1990; Wang et al., 1995) predict that slab temperatures, and hence dehydration 69 

patterns, evolve over time. These thermal changes create transients in mantle wedge 70 

hydration and dehydration, which time-invariant models cannot capture. For example, rapid 71 

changes in slabtop temperatures can arise due to time-dependent kinematic properties that 72 

make up the “thermal parameter” (e.g., Kirby et al., 1996; van Keken et al., 2011), such as 73 

convergence rates, which can evolve even over million-year timescales (Faccenna et al., 74 

2001; Sdrolias & Müller, 2006). These changes are self-consistently captured in “dynamic” 75 

subduction models, where plate forces and velocities are allowed to evolve freely without 76 

external forcing. These models self-consistently produce a highly time-dependent slab 77 

thermal structure (e.g., Kincaid & Sacks, 1997; Billen & Arredondo, 2018) and hence time-78 

dependent water release (Holt & Condit, 2021; Zhou & Wada, 2021). Fluctuations in water 79 



release also affect water storage: a postprocessing of Holt and Condit’s (2021) dynamic 80 

subduction thermal models revealed that slab water release and water storage in mantle 81 

wedge serpentinites almost always exceed those predicted by fixed-geometry, constant-82 

velocity subduction models (Abers et al., 2017) because dynamic models capture the hotter, 83 

earlier stages of subduction (Epstein et al., 2024). However, in a dynamic context, the 84 

release and storage of water is also likely to impact the slab evolution itself, because weak 85 

hydrous minerals accumulating near the plate interface influence the mechanical and 86 

rheological properties of the interface.  87 

While previous studies have incorporated time-dependent hydration of the mantle 88 

wedge and associated serpentinite ingrowth, they have typically prescribed plate speeds 89 

and/or subduction zone geometries. These assumptions, in turn, neglect the dynamic 90 

evolution of subduction zone properties, such as convergence rate and dip, and hence the 91 

resulting impact of changes in these kinematic properties on slab and wedge temperatures, 92 

dehydration/hydration, and vice versa. Such studies have successfully captured the impacts 93 

of serpentinization in contexts such as high/ultra-high pressure rock exhumation (Gerya et 94 

al., 2002; Gerya & Stöckhert, 2006), arc magmatism (Gorczyk et al., 2007; Nikolaeva et al., 95 

2008; Gerya & Meilick, 2011), mantle wedge dynamics (Wada et al., 2008; Li et al., 2019; 96 

Kerswell et al., 2021), and steady-state water budgets (Wada et al., 2012; Abers et al., 97 

2017). Other studies have illuminated some of the feedbacks between serpentinization and 98 

large-scale subduction using models implementing wedge hydration and milder kinematic 99 

prescriptions, such as prescribed boundary conditions for part of the model duration (Li et 100 

al., 2019; Balázs et al., 2022), or prescribed velocities on only one of the two plates (Arcay et 101 

al., 2005, 2006). Some notable exceptions include the studies of Nakao et al. (2016, 2018), 102 

which did employ dynamic models to explore the significant impact of wedge hydration on 103 

subduction properties, such as convergence rates and slab dips, but focused on hydrous 104 

weakening in a generalized sense (i.e., not serpentinite-specific). Ritter et al. (2024) also 105 

implemented wedge hydration, and in this case serpentinization, in the context of 106 

dynamically-evolving subduction but with a specific focus on subduction initiation. However, 107 

taken together, most previous subduction modeling studies have thus integrated only 108 

specific feedbacks related to slab dehydration and mantle wedge serpentinization within 109 

kinematically-driven models, or, within dynamic models, explored generic fluid-related 110 



mantle weakening and/or focused on specific phases of subduction. Here, we therefore 111 

conduct a comprehensive examination of the interplay between forearc hydration and 112 

serpentinization, interface properties, and their combined influence on dynamically evolving 113 

subduction properties. 114 

One example of how serpentinization may impact large-scale subduction is by 115 

modifying the strength of the plate interface, which, in turn, affects the subduction zone 116 

force balance and hence plate velocities. Such feedbacks between slab behavior, such as 117 

plate speeds, and variable interface strength have been explored within fully dynamic 118 

models for interfaces with uniform lithologies at the slabtop (Čížková & Bina, 2013; Behr et 119 

al., 2022). For example, weak subducting materials, including sediment (Shreve & Cloos, 120 

1986; Lamb, 2006; Behr & Becker, 2018) and altered oceanic crust (Kimura & Ludden, 1995), 121 

can impact subduction zone plate speeds by reducing the net subducting-resisting shear 122 

stress exerted on the slab by the interface (Conrad & Hager, 1999). However, in contrast to 123 

a potentially steady input of sediment or oceanic crust, weak hydrous minerals, such as 124 

serpentine (Moore & Lockner, 2004; Wada & Wang, 2009) or talc (Horn & Deere, 1962; 125 

Boneh et al., 2023), accumulate in the mantle wedge over time as hydrous fluids are 126 

released from the downgoing slab. These minerals have been shown to weaken the plate 127 

interface in models with hydration of the mantle wedge (Arcay et al., 2005; Gerya et al., 128 

2008; Nakao et al., 2016, 2018). Therefore, we expect serpentinite accumulation in the 129 

mantle wedge to cause a time-dependent feedback loop with subduction kinematics, such 130 

as plate speeds, because serpentine stability in the mantle wedge is highly dependent on 131 

the time-evolving P-T conditions. These conditions are modulated by advection driven by 132 

plate speeds, which are, in turn, influenced by the strength of weak materials at the plate 133 

interface, including serpentinite. Thus, examining feedbacks between slab thermal 134 

structure, serpentinization, and plate dynamics requires the coupling of temperature-135 

dependent dehydration and hydration with freely evolving model subduction zones. 136 

To reveal the scope of emergent feedbacks between serpentinization and large-scale 137 

subduction zone evolution, we present dynamic models of subduction with weak 138 

serpentinite ingrowth near the plate interface. We isolate the impacts of slab dehydration, 139 

wedge hydration via serpentinization, and associated strength changes of the plate interface 140 

by examining numerical models with varying interface yielding properties and hydration 141 



states of the downgoing slab crust. By simulating serpentinite formation and its feedback on 142 

temperature, water release, and plate interface lubrication, these models directly capture 143 

and quantify time-dependent subduction zone strength and dynamics. 144 

2 Materials and Methods 145 

We develop 2-D ocean-ocean subduction models using the ASPECT finite element 146 

code (ASPECT v2.5.0-pre; Kronbichler et al., 2012; Heister et al., 2017; Rose et al., 2017; 147 

Gassmöller et al., 2018; Bangerth et al., 2023). We solve for the conservation of momentum, 148 

mass, and energy, respectively. The incompressible Boussinesq approximation is used for 149 

mass conservation, and we do not incorporate radioactive or shear heating: 150 

1. −𝛻 ∙ 2𝜂𝜀̇(𝑣) + 𝛻𝑝 = 𝜌𝑔 151 

2. 𝛻 ∙ 𝑣 = 0 152 

3. 𝜌𝐶𝑝 (𝜕𝑇
𝜕𝑡  +  𝑣 ∙ 𝛻𝑇) − 𝑘𝛻2𝑇 = 0 153 

Where 𝜂 is viscosity, 𝜀̇ is strain rate, 𝑣 is velocity, 𝑝 is the total pressure, 𝜌 is density, 154 

and 𝑔 is gravitational acceleration. In the heat conservation equation 𝐶𝑝 is the specific heat 155 

capacity, 𝑇 is temperature, and 𝑘 is thermal conductivity. Individual lithologies are 156 

represented by compositional fields that are advected by the flow field. Advection of these 157 

compositional fields is treated by an additional advection equation (Equation 4) for each 158 

field c to the preceding equations (Equation 1-3): 159 

4. 𝜕𝑐𝑖
𝜕𝑡

+ 𝑣 ∙ 𝛻𝑐𝑖  = 𝑞𝑖 160 

A source reaction term q is used to update compositional quantities, such as the 161 

ingrowth of serpentinite.  162 

We consider an initially 100-million-year-old oceanic plate subducting below a 163 

younger, 10-million-year-old overriding plate to ensure self-sustained subduction (Figure 1). 164 

Spreading centers are located 500 km from either boundary of the domain at the margins of 165 

both the subducting plate and overriding plate. An initial curved section of the subducting 166 

plate is included that extends to a depth of 50 km and to 145 km inboard of the trench. The 167 



model domain dimensions are 5800 × 1450 km. All other associated parameters are listed in 168 

Table 1 and Table S1. ` 169 

The models are dynamic, and plate forces and geometries are allowed to evolve 170 

freely. In terms of thermal structure and (non-interface) mechanical properties, the models 171 

are similar to those of Holt and Condit (2021). However, unlike in this previous work, the 172 

present models contain a free surface with surface diffusion at the upper boundary. This 173 

free surface is allowed to isostatically equilibrate for 100 timesteps prior to the main 50 174 

million year-long model run (Figure 1). A diffusion coefficient of 10-7 m2/s is used to prevent 175 

extreme topographic gradients and hence increase numerical stability (e.g., Rose et al., 176 

2017). Except for this free surface upper boundary, free-slip boundaries are enforced 177 

elsewhere. A constant mantle potential temperature of 1421°C is used (GDH1 plate cooling 178 

model: Stein & Stein, 1992). Constant temperatures are enforced at the bottom (1421°C) 179 

and top (0 °C) of the domain. Insulated (no heat flux) boundary conditions are enforced on 180 

the left and right sides of the domain.  181 

ASPECT’s adaptive mesh refinement (AMR) functionality is used to locally increase 182 

model resolution in regions with high strain rates, high temperatures, or within regions 183 

containing threshold quantities of the lithologies (or compositions, i.e. Equation 4) that 184 

make up the plate interface region. Refinement levels are chosen so that there is a 185 

minimum resolution of ~ 230 km and a maximum resolution of ~ 1.3 km (e.g., within the 186 

plate interface). We also set the resolution near the 660 km discontinuity to have a grid size 187 

of ~ 2.6 km. In the reference model, the initial number of degrees of freedom is ~ 188 

2,900,000, and the final number of degrees of freedom at the end of the run, after 189 

increasing amounts of mesh refinement, is ~ 9,400,000.  190 



 191 

Figure 1. Model set-up showing the initial viscosity field and initial, isostatically equilibrated, topography (a) 192 

with a zoom-in of the subduction interface region (b). The lithologies/compositions of the downgoing crust are 193 

also shown, with thicknesses and the range of explored sediment H2O concentrations (see Methods Sections 194 

2.1-2.2). As illustrated, some compositions use lookup tables to assign rheology and density (see Table 1).  195 

2.1 Phase stability  196 

Our model crust is constructed as a simplified version of the oceanic crust described 197 

in Jarrard (2003) and overlain by pelagic sediment with a composition from Hacker (2008). 198 

The crust is composed of, in order of increasing depth away from the slabtop, 1 km of 199 

pelagic sediment, 2 km of metabasalt, and 5 km of metagabbro (Figure 1b). Assuming a 100 200 

Myr old oceanic crust, the metabasalt initial H2O content is calculated as an average of the 201 

H2O content of 300 m of upper volcanic extrusives (6.04 wt. %), 300 m of lower extrusives 202 

(4.1 wt. %), and 1600 m of sheeted dykes (1.76 wt. %) for an H2O content of 2.3 wt. % 203 

distributed homogeneously throughout the 2 km of slab upper crust. The metagabbro has 204 

0.79 wt. % H2O, while the pelagic sediment has 6.89 wt. % H2O because we infer it is fully 205 

saturated. However, to explore the impact of variable H2O inputs, we examine a range of 206 

sediment H2O concentrations relative to this reference value (Figure 1b). No initial pore fluid 207 



is included for any of the crust; all H2O is initially mineralogically bound (Table 1). Hydration 208 

of abyssal serpentinite is not considered because abyssal serpentinite dehydration occurs 209 

beyond serpentinite stability in the wedge, as expected given that slab interiors are cooler 210 

than slab tops (Epstein et al., 2024), though km-scale layers of abyssal serpentinites with 211 

very low density may resist subduction (Nakao et al., 2018).  212 

Phase equilibria modelling is used to track the stable mineral assemblage in the 213 

various slab lithologies as a function of pressure-temperature (P-T) conditions. Density and 214 

bound water content for all crustal compositions are determined directly from the phase 215 

equilibria results, and viscosities are calculated within ASPECT using flow laws associated 216 

with the dominant calculated mineral modes (see Section 2.4). Fluid released during 217 

metamorphic dehydration reactions (assumed to be pure H2O) is determined by monitoring 218 

changes in the bound water content of the mineral assemblage during prograde 219 

metamorphism, similar to previous studies (van Keken et al., 2011; Wada et al., 2012; Abers 220 

et al., 2017; Condit et al., 2020; Epstein et al., 2024). Once free water is produced, it is 221 

tracked as described in the following section. We use “water” throughout the text 222 

interchangeably with H2O even though such fluid may be supercritical in part of the domain. 223 

Phase equilibria modeling and the production of data tables used by ASPECT were 224 

performed using Perple_X version 7.0.1 (Connolly, 2005). All thermodynamic calculations 225 

were carried out in the system Na2O‐CaO‐K2O‐FeO‐MgO‐Al2O3‐SiO2‐H2O. We use the 226 

thermodynamic database of Holland and Powell (2011) and Pitzer and Sterner (1994) for the 227 

fluid equation of state. Solid solution models for all calculations are provided in the 228 

Supporting Information (Table S2).  229 

2.2 H2O Transport 230 

Although the mantle wedge is not initially hydrated, the hydrated crust from the 231 

downgoing plate encounters relatively hotter conditions in the mantle wedge, causing the 232 

crust, including the pelagic sediment, to progressively dehydrate and release free H2O, or 233 

water. In our models, the free H2O is stored and transported throughout the domain as a 234 

compositional field (Equation 4), i.e., in addition to those representing crustal lithologies 235 

and serpentinite. Figure 2 shows a flowchart depicting the treatment of this water release, 236 

transport, and storage in the model. After the 0th timestep, mineral-bound H2O is assigned 237 



in all source lithologies where water is expected to be present (i.e., following Figure 1b). At 238 

each subsequent timestep, the mineral-bound H2O content for each lithology is recalculated 239 

using lookup tables created from Perple_X phase equilibria modeling results. This updated, 240 

mineral-bound H2O content is then compared to the mineral-bound H2O content of the 241 

previous step. If the new bound H2O content is lower than the preceding timestep, then 242 

water must be released: the difference becomes the amount of the free H2O phase present 243 

in the system that is produced by the metamorphic breakdown of hydrous minerals. If no 244 

H2O release occurs, then no dehydration takes place.  245 

Treating free H2O and other lithologies as a continuum and not as particles means 246 

that, in each model cell, the associated compositions can be less than unity, and hence 247 

individual compositions in the crustal column can numerically diffuse into each other 248 

(Kronbichler et al., 2012). During the dehydration calculations we therefore scale each 249 

bound H2O amount for the magnitude of each composition (from 0-100%) within a given cell 250 

to prevent over or under-prediction of the H2O content. 251 

Free H2O is, for simplicity, advected vertically upward at a constant rate of 10 cm/yr 252 

(e.g., Gerya et al., 2002; Gorczyk et al., 2007). In practice, this is implemented by modifying 253 

the ASPECT “plug-in” of Douglas et al. (2023) that adds two-phase (Darcy) flow to ASPECT. 254 

Here, instead of solving for the fluid velocity, we set the velocity at a constant value in the 255 

plug-in.  256 

Free H2O may interact with the mantle wedge in three ways: a) if the temperature is 257 

above the calculated wet solidus (Katz et al., 2003) then all the free fluid is assumed to be 258 

absorbed into the melts, which can readily accept >10 wt. % H2O (Hamilton et al., 1964; 259 

Mitchell et al., 2017; Gavrilenko et al., 2019). Melt migration and the effect of melt on 260 

viscosity are not modeled: a melt region is calculated purely to be consistent with H2O being 261 

incorporated into melts, removing the associated free H2O, and hence preventing extensive 262 

serpentinization of the base of the overriding plate in the “arc region;” b) If the temperature 263 

is below that of the solidus yet above that of serpentinization stability, free H2O continues 264 

to be advected upwards but weakens the surrounding mantle by a factor of 100. This 265 

mimics the weaker rheology of a hydrated peridotite, which has a lower viscosity than dry 266 

olivine aggregates as a proxy for peridotite (Hirth & Kohlstedt, 2003). c) If the free H2O is in 267 

the mantle and within the serpentinite stability field, it is bound within a “serpentinite 268 



compositional field.” Free H2O is not allowed to react with the overriding plate crust. Any 269 

free H2O that reaches the Earth’s surface is removed from the model. 270 

Serpentinite can also be dragged downwards to P-T conditions outside of 271 

serpentinite stability. While the resulting deserpentinization is not tracked directly, if any 272 

such material in the serpentinite field exits the region of serpentinite stability, then the 273 

background olivine flow law and peridotite density are re-imposed. For clarity, we use the 274 

terms cumulative serpentinite to denote the “serpentinite” compositional field, which 275 

includes both currently stable serpentinite and mantle material that has deserpentinized, 276 

and the term instantaneous serpentinite, which refers to any serpentinite that is currently 277 

stable as serpentinite.  278 

 279 

Figure 2. Flowchart illustrating our implementation of water release, transport, and storage. Bound H2O is 280 

calculated with lookups created from the outputs of Perple_X phase equilibria calculations. At each timestep, 281 

new and old H2O contents are calculated, and the remaining H2O is transformed into a “free H2O” phase, which 282 

percolates upward at 10 cm/yr. If free H2O interacts with the mantle wedge it: a) is absorbed into melts if the 283 

temperature is above the calculated wet solidus H2O (Katz et al., 2003), b) continues to be advected upwards, 284 

but causes a weakening of the surrounding mantle by 100x, if the temperature is between the temperature of 285 

the solidus and serpentinization, c) is bound within a “serpentinite field” if serpentinite is stable based on the 286 

associated lookup table. 287 

 288 

2.3 Rheology 289 

We first describe the overarching equations governing rheology, including yielding 290 

and creep deformation, within all model compositions. In subsequent subsections, we detail 291 



the parameters used for specific compositions. Overall, we adopt a composite flow law, with 292 

diffusion creep, dislocation creep, and pseudo-plastic yielding (Glerum et al., 2018) for the 293 

background lithosphere and mantle (i.e., outside of the plate interface materials and any 294 

serpentinite). Both diffusion and dislocation creep mechanisms are assigned viscosities 295 

following the idealized flow law: 296 

5. 𝜂𝑐𝑟𝑒𝑒𝑝 =  𝐴
−1
𝑛 𝜀𝐼̇𝐼

1−𝑛
𝑛 𝑓𝐻2𝑂

𝑟 𝑒𝑥𝑝 (𝐸𝑎+𝑃𝑉
𝑛𝑅𝑇

) 297 

where A is the creep prefactor, n is the stress exponent (1 for olivine diffusion creep; 298 

~ 3.5 for olivine dislocation creep), 𝜀̇𝐼𝐼 is the second invariant of the deviatoric strain rate, E 299 

is the activation energy, V is the activation volume, R is the ideal gas constant, and T is the 300 

temperature (Table 1). An exponential weakening term is also used for crustal rheologies 301 

whose P-T conditions intersect the solidus, which only occurs early in the model evolution 302 

(Figure S1). Despite the assumption of incompressibility in our conservation equations 303 

(Equations 1-2), we add a 0.3 °C/km adiabatic temperature gradient to temperatures used in 304 

the creep formulation. 305 

 306 

We also incorporate pseudo-plastic yielding in the form of a “plastic” viscosity, 307 

𝜂𝑝𝑙𝑎𝑠𝑡𝑖𝑐. The process of forming brittle fractures at the scale seen in nature, on the sub-308 

meter scale or outcrop scale (e.g., Rowe et al., 2013), is computationally infeasible in the 309 

current models. Furthermore, multiple strain mechanisms, brittle, semi-brittle, and viscous 310 

may be operating concurrently. All such deformation processes tend to produce highly 311 

localized regions of shear in regions such as the bending portion of the subducting 312 

lithosphere (e.g., Ranero et al., 2003). We therefore subsume all such mechanisms into a 313 

plastic component using a 2-D Drucker-Prager criterion to prescribe a yield stress, 𝜎𝑦: 314 

6. 𝜎𝑦  =  𝐶𝑐𝑜𝑠(𝜑)  +  𝑠𝑖𝑛(𝜑)𝑃 315 

Where C is the cohesion, P the pressure, and 𝜑 is the friction angle. Furthermore, an 316 

array of studies has already shown that pore-fluid pressure along the subduction interface is 317 

likely high during shear (Audet & Bürgmann, 2014; Peacock et al., 2011; Condit & French, 318 

2022). We therefore use an “effective friction” coefficient that is meant to encapsulate the 319 



effects of pore-fluid overpressure, which weakens the interface. We therefore recast 320 

Equation 6 as: 321 

7. 𝜎𝑦  =  𝜇𝑒𝑓𝑓𝑃 + 𝐶0 322 

8. 𝜇𝑒𝑓𝑓 = (1 − 𝜆)𝜇 323 

Where Co is a modified cohesion that includes the friction angle term, and 𝜆 is a pore 324 

fluid pressure coefficient. The plastic viscosity is then computed as a function of the yield 325 

stress and second invariant of the deviatoric strain rate: 326 

9. 𝜂𝑝𝑙𝑎𝑠𝑡𝑖𝑐 =  𝜎𝑦

2𝜀̇𝐼𝐼
 327 

Viscosities associated with the different rheological mechanisms are then 328 

harmonically averaged to generate the model (or “composite”) viscosity: 329 

10. 1
𝜂𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

= 1
𝜂𝑑𝑖𝑓𝑓

+ 1
𝜂𝑑𝑖𝑠𝑙

+ 1
𝜂𝑝𝑙𝑎𝑠𝑡𝑖𝑐

  330 

The subscripts “diff,” “disl,” and “plastic” refer to diffusion creep, dislocation creep, 331 

and plastic viscosity components, respectively. If a model grid cell contains more than one 332 

composition (e.g., basalt and sediment), the respective composite viscosities are averaged 333 

using a geometric mean. All rheological parameters for all compositions are detailed in the 334 

following three sub-sections and listed in Table 1. 335 

 336 

Composition Flow lawa A n Ea r V τ0 

(LTP)b 

p 

(LTP)b 

q 

(LTP)b 

melt C0 𝝻eff  Initial 

H2O  

Reference 

density 

[Pa-n.s-1] — [kJ/mol] — [cm3mol-1] [GPa] — — — [MPa] — [wt. %] [kg/m3] 

sediment wet quartzd 6.31×10-36 4 135 1 0 — — — — 1 0.02 6.89 lookup 

metabasalt wet quartzd 6.31×10-36 4 135 1 0 — — — — 1 0.04 2.32 lookup 

amphibolitee 6.94×10-27 3.7 244 0 0 — — — 27 

eclogitef 1.99×10-18 3.5 403 0 27.2 — — — 27 

metagabbro wet quartzd 6.31×10-36 4 135 0 0 — — — — 20 0.04 0.79 lookup 

amphibolitee 6.94×10-27 3.7 244 1 0 — — — 27 

eclogitef 1.99×10-18 3.5 403 0 27.2 — — — 27 

serpentinite serpentiniteb,c 4.37×10-22 2 86.3 — — 2.42 1 1.18 — 1 0.01-

0.06 

— lookup 



mantle dry olivine (disl. 

creep)g 

9.15×10-20 3.5 540 0 12 — — — — 20 0.36 0 3300 

dry olivine (diff. 

creep)g 

9.6×10-12 1 300 0 4 — — — — 

overriding plate 

oceanic crust 

same as mantle — — — — — — — — —  0.36 0 2800 

yielding region same as mantle — — — — — — — — —  0 0 3300 

lower mantle 20× olivine diff. 

creep 

4.8x10-13 1 300 0  — — — —  0.36 0 3300 

aEquation 5; bBurdette & Hirth (2022) and Fildes & Billen (2025); cEquation 12; dHirth et al. (2001); eHacker & Christie (1990); fZhang & Green (2007); gKarato & Wu (1993) 

Table 1. Model parameters associated with individual compositions. 337 

2.3.1 Mantle Rheology 338 

The viscous component of the background mantle deforms via a combination of 339 

diffusion and dislocation creep, with activation volumes and energies corresponding to 340 

those of dry olivine (Karato & Wu, 1993; Table 1). Diffusion and dislocation prefactors are 341 

set to produce a composite viscosity of 2.5×1020 Pa s (i.e., ηdiff = ηdisl = 5×1020 Pa s) at a 342 

reference strain rate of 10-14 s-1, the background mantle temperature, and lithostatic 343 

pressures corresponding to 330 km depth (cf. Billen & Hirth, 2005). These values result in 344 

sub-lithospheric deformation that is dominated by dislocation creep down to depths of ~ 345 

250 km, as is broadly consistent with constraints from seismic anisotropy (Becker, 2006; 346 

Podolefsky et al., 2004). A weakening factor of 100× is imposed in the mantle in regions with 347 

free H2O to mimic the weaker rheology of hydrated peridotites (i.e., an additional 0.01 348 

prefactor added to Equation 5), which have lower viscosities than the dry olivine used to 349 

approximation peridotite (Hirth & Kohlstedt, 2003). 350 

At depths greater than 660 km, the lower mantle is allowed to deform only via 351 

diffusion creep, with the lower mantle diffusion creep prefactor set to produce a viscosity 352 

20 times that of upper mantle diffusion creep. The thickness of the transition to the lower 353 

mantle is 1 km. As outlined, our yield stress formulation considers both a friction coefficient 354 

μ, as traditionally measured in rock deformation experiments, and a pore fluid pressure 355 

factor to give an effective coefficient (μeff = μ(1-λ); Equations 7-8). We set μeff = 0.36 (e.g., 356 

considering near-hydrostatic conditions with λ = 0.4 and μ = 0.6) and a cohesion of 20 MPa 357 

(Table 1). At the trailing edges of the upper and subducting plates we add a weak region to 358 

mechanically isolate the subducting and overriding plates from the adjacent thermal 359 



boundary layers that develop as the model evolves. These two weak regions are 30 km wide 360 

by 150 km deep with a constant yield stress of 1 MPa. 361 

2.3.2 Crustal Rheology 362 

For oceanic compositions, we use lookup tables (metabasalt, metagabbro) to impose 363 

the flow law associated with the weakest mineral predicted to be stable and hence 364 

dominate creep at those P-T conditions (Figure S1). In metamafic lithologies, dislocation 365 

creep flow laws are used for quartz (Hirth et al., 2001; as a stand-in for the blueschist facies 366 

glaucophane), amphibolite (Hacker & Christie, 1990), and eclogite (Zhang & Green, 2007). 367 

We adopt a dislocation creep quartz flow law for the pelagic sediment (Hirth et al., 2001). A 368 

maximum decoupling depth (MDD) of 200 km is chosen. That is, at depths greater than the 369 

MDD, the downgoing crust is assigned properties identical to the background mantle.  370 

In terms of the plastic yield stress, we set the friction angle so that a μeff of 0.36 is 371 

also used for metagabbro and upper plate crust (i.e., an equivalent yielding profile to that of 372 

the background mantle). We prescribe a lower yield stress within the 145 km long initially 373 

curved portion of the interface (μeff = 0.005) to facilitate subduction initiation. A cohesion C0 374 

of 1 MPa is used for pelagic sediment and metabasalt and 20 MPa for metagabbro (Table 1; 375 

Equation 7).  376 

2.3.3 Serpentinite Rheology 377 

Modeled serpentinite deforms via the Peierls creep mechanism (low-temperature 378 

plasticity; Burdette & Hirth, 2022). Peierls creep is implemented as a dislocation creep 379 

approximation of the Peierls creep flow‐law (Kocks et al., 1975; Frost and Ashby, 1982): 380 

11. 𝜖̇ = 𝐴𝜎2 𝑒𝑥𝑝 (−𝐸𝑎
𝑅𝑇 (1 − ( 𝜎

𝜏0
)

𝑝
)

𝑞
)  381 

Where 𝜏0 is the low-temperature plasticity Peierls stress and p and q are empirical 382 

parameters, and Ea the activation energy for the Peierls mechanism. Unlike dislocation and 383 

diffusion creep (Equation 5), the Peierls creep flow law cannot be rearranged for stress 384 

because of the stress dependence in the exponent. Therefore, we use a dislocation creep-385 

based approximation of low-temperature plasticity/Peierls creep (see Kameyama et al., 386 

1999; Fildes & Billen, 2025; Text S1 for more details) with constants from Burdette & Hirth’s 387 



(2022) antigorite experiments. At each timestep, the stability field of serpentinite is checked 388 

based on a lookup table, and, if the composition is within serpentinite stability, the full 389 

Peierls creep flow law is used for model cells with above 10 wt. % serpentinite (Escartin et 390 

al., 2001), and therefore . In regions below 10 wt. % serpentinite, the serpentinite rheology 391 

is geometrically averaged along with the other composition(s) in the cell. Viscosity is thus 392 

reduced in regions where serpentinite exceeds the threshold. Outside of serpentinite 393 

stability we adopt the olivine rheology imposed on the background mantle. Water that 394 

would be re-released by deserpentinizing material is not tracked.  395 

We also include a plastic yielding component in the serpentinite rheology. Reported 396 

serpentinite yield stresses span a broad range of values, depending on serpentine species, 397 

temperature, velocity, and pressure. For example, reported friction coefficients (µ) of 398 

lizardite range from 0.18 (Carpenter et al., 2009; Tesei et al., 2018) to ~ 0.55 (Dengo & 399 

Logan, 1981; Moore et al., 1997), with many experiments falling in the 0.25-0.4 range 400 

(Moore & Lockner, 2004; Behnsen & Faulkner, 2012; Scuderi & Carpenter, 2022). 401 

Conversely, antigorite (the high temperature polymorph of serpentinite), generally has a 402 

higher coefficient of friction of 0.5-0.85 (Raleigh & Paterson, 1965; Reinen et al., 1994), 403 

which may be decreased if dissolution-precipitation creep enhances susceptibility to failure 404 

(Rutter, 1976; Behr & Platt, 2013; Tulley et al., 2024). Given this uncertainty, we explore a 405 

range of values for the serpentinite yield strength, with μeff = 0.01-0.04 and a cohesion of 1 406 

MPa (i.e., considering λ ~ 0.90-0.95 and μ = 0.2-0.6; Table 1). We provide more detailed 407 

discussion and references on both the Peierls creep formulation and serpentinite yielding in 408 

the Supporting Information (Text S1). 409 

 410 

3 Results 411 

We first present our reference subduction model that includes serpentinite ingrowth 412 

over time. Next, we analyze similar models with variable H2O inputs into the subduction 413 

zone, including with and without a sediment layer. Finally, we vary serpentinite strength to 414 

test the sensitivity of subduction kinematics and slab pressure-temperature (P-T) conditions 415 

to our rheological assumptions about the weak, accumulating serpentinite along the plate 416 

interface.  417 



To ensure consistency in comparing serpentinite ingrowth across simulations, we 418 

compare model snapshots at timesteps with equivalent total amounts of subducted plate 419 

length (i.e., net convergence) and therefore equivalent amounts of net bound H2O input 420 

from the portion of the downgoing slab beneath the variably hydrated sediment layer. We 421 

focus on timesteps at which the net convergence corresponds to approximately that 422 

required for the downgoing plate to reach the lower mantle (i.e., net convergence ~ 860 423 

km). For completeness, we also present comparisons at equivalent model times in the 424 

Supporting Information (Figure S3) as well as additional tests that individually exclude 425 

various complexities from the reference models, namely serpentinite, fluid-induced mantle 426 

weakening, and the use of phase diagram lookups to derive the density and viscosities of 427 

the interface/crustal lithologies (Figures S4-S7).  428 

3.1 Reference model 429 

Because the models are dynamic, plate motions are not imposed and hence 430 

subduction geometries and velocities evolve freely through time, thereby impacting, and 431 

being impacted by, serpentinite ingrowth for 50 Myr (Figure 3). The co-evolving 432 

convergence rates, serpentinite content, and slab P-T profiles are displayed in Figure 4 for 433 

the reference model. The P-T profiles are overlain on the pseudosections used for pelagic 434 

sediment and metabasalt (Figure 4b-c), the two most hydrated lithologies of our model slab.  435 



 436 

 437 

Figure 3. Snapshots of reference model evolution. (a, b) Model stages showing the initiation (Phase I) and free-438 

sinking phases (Phase II), respectively, with the downgoing slab releasing free H2O that hydrates the mantle 439 

wedge via serpentinization (“cumulative serpentinization” shown). (c, d) Evolution just before (Phase II) and 440 

after (Phase III) the core of the slab passes the 660 km deep transition zone. (d) Grey shows extent of slab 441 

outside zoom-in region. To limit excess hydration of the overriding plate, a hydrous "melt" region is calculated 442 

(Katz et al., 2003), where free H2O is assumed to be incorporated into melt and removed from the system (see 443 

Methods, Section 2.2, for details).  444 

 445 

 446 

Figure 4. Kinematic and thermal evolution of the reference model. (a) Ingrowth of cumulative serpentinite 447 

produced over the course of the model, and instantaneous serpentinite content including serpentinite stable 448 

at a given point in time, i.e. without deserpentinized/downdragged material. I refers to the infancy stage, II to 449 

the free sinking phase, III to the mature phase as classified by previous studies (e.g., Holt & Condit, 2021). (b) 450 

Evolution of slabtop and (c) near slabtop thermal states. Background shows bound water used in lookups for 451 

pelagic sediments and metabasalts, respectively. Serpentine stability in the mantle wedge is also shown for 452 

reference. Lightly shaded P-T paths (c) coincide with the slabtop P-T, and darker shading coincides with P-T 453 

conditions at the top of the metabasalt section, 1 km deep normal to the plate interface.  454 



 455 

During the subduction infancy stage (I), until ~ 8 Myr, the slab largely sinks near-456 

vertically (Figure 3a). Subduction is relatively sluggish but accelerates from ~ 3 to 5.5 cm/yr 457 

(Figure 4a). Convergence is dominantly accommodated via rollback, with overriding plate 458 

motion initially ~ 5× faster than that of the subducting plate. This infancy stage is the 459 

hottest phase, with a slabtop significantly warmer than during the latter stages (Figure 4b). 460 

As a result, H2O is released from the downgoing oceanic crust into the mantle wedge only 461 

down to a maximum depth of ~ 60 km at 0.7 Myr (Figure 3a). Released H2O migrates 462 

upwards until it either: 1) enters a region where melt is stable, where it is removed, or, 2) 463 

enters a region where serpentinite is stable, where it is bound in serpentinite in the mantle 464 

wedge (Figure 3c). During this initiation phase, serpentinite formed and dragged down over 465 

the total model run—cumulative serpentinite—is approximately equal to the instantaneous 466 

serpentinite—the amount of stable serpentinite in the mantle wedge at any given point in 467 

time. That is, there is minimal downdragging of serpentinite during the initiation stage. 468 

Additionally, there is relatively modest serpentinite production: Only <20% of cumulative 469 

serpentinization of the entire model duration is produced by the end of this phase (Figure 470 

4a). At the beginning of this stage (0.7 Myr), the amount of serpentinite has not yet 471 

exceeded the 10 wt. % serpentinite per cell threshold that triggers the full weak serpentinite 472 

rheology (Figure 3a), and therefore the accelerating convergence rate is not due to 473 

serpentinite ingrowth, creating a layer 5 km thick (Figure S8).  474 

During the following free sinking phase (II), the tip of the downgoing plate 475 

approaches the 660 km transition at a steep dip (Figure 3b) before flattening out to a sub-476 

horizontal angle (Figure 3c). At this point, the convergence rate reaches its maximum value 477 

(Figure 4a), and both these higher advection rates of the sinking slab and thickening of the 478 

cold forearc region (i.e., an increase in the “decoupling depth”) cause temperatures to cool 479 

by ~ 200 °C at 3 GPa from 10.9 to 16.0 Myr. Such cooling has been seen in previous time-480 

dependent subduction models (Wang et al., 1995; Kincaid & Sacks, 1997; Holt & Condit, 481 

2021; Turino & Holt, 2024). As a result of cooler temperatures, water release from the 482 

oceanic crust occurs at greater depths than during subduction infancy, down to 80 km 483 

(Figure 4c). However, water release in pelagic sediments has a shallow pulse at ~ 30 km that 484 

coincides with the depths of dehydration from the loss of stilpnomelane (Figure S9). Mantle 485 



wedge serpentinite content is greatest shallower than 50 km (1.7 GPa) depth, approximately 486 

where these pelagic sediments dehydrate, while deeper dehydration arises from the 487 

dehydrating oceanic section (Figure 4b-c). Water released by slab dehydration causes more 488 

serpentinite to accumulate in the mantle wedge, increasing instantaneous serpentinite 489 

content by ~ 40% over phase II from ~ 12 km3/km to a peak of ~ 16 km3/km. During this 490 

phase, serpentinite also begins to be dragged downwards to P-T conditions where 491 

serpentine is unstable and thus breaks down; hence, instantaneous serpentinite (stable in 492 

the interface/forearc) becomes significantly less than cumulative serpentinite. Therefore, 493 

during this stage, downdragging begins to exceed serpentinite ingrowth, causing the 494 

amount of instantaneous serpentinite in the mantle wedge to start to decrease (Figure 4a). 495 

However, throughout this phase, and in contrast to the earlier phase, enough serpentinite 496 

has accumulated to exceed the 10 wt. % serpentinite lubrication threshold along the 497 

interface, and therefore the plate interface is lubricated by serpentinite (Figure 3b-c). 498 

The sinking of the slab into the lower mantle, past the 660 km transition zone, marks 499 

the beginning of the mature phase (III; Figure 3d). After ~ 17.6 Myr (the boundary between 500 

phase II and III), convergence rates decrease to below 2 cm/yr; this slowdown is driven by 501 

the slab penetrating the high viscosity lower mantle. Slab P-T conditions are too cold for 502 

metabasalts and metagabbros to dehydrate within the serpentinite field, and any additional 503 

dehydration must come from metasediments (Figure 4b). Dehydration of metasediments 504 

continues, causing the cumulative serpentinite to progressively increase. However, most 505 

newly formed serpentinite is dragged downwards (Figure 3d). In fact, downdragging slightly 506 

outpaces ingrowth, causing instantaneous serpentinite to decrease ~ 5% from 17.6 to 50 507 

Myr (Figure 4a).   508 

3.2 Variable H2O input 509 

To examine the effect of mineral-bound H2O content on slab dehydration and 510 

forearc serpentinization, we vary water content in the downgoing 1 km-thick sediment 511 

layer, comparing a “fully saturated” case with the maximum amount of mineral-bound H2O 512 

(6.89 wt. %), our intermediate, moderately hydrated reference case (4 wt. % H2O), and a 513 

completely anhydrous case with 0% H2O (Figure 5a-c). Additionally, we include a limiting 514 

case identical to those shown in Figure 5a-c but with no sediment layer above the 515 



metabasalts (Figure 5d). In both the anhydrous and no-sediment cases, H2O is released 516 

exclusively from the metabasalts and metagabbros.  517 

 518 

 519 

Figure 5. Snapshots of models while varying the hydration state of the incoming sediment. To standardize the 520 

amount of bound water input into the subduction zone, all model time slices are shown for the same distance 521 

subducted, approximately enough to reach the 660 km transition zone. (a-c) Models showing variation in 522 

sediment hydration state from fully hydrated to anhydrous (6.89% to 0%). (d) No sediment but with other 523 

lithologies (metabasalt, metagabbro) still initially hydrated.  524 

 525 

 526 

Figure 6. Kinematic and thermal evolution of models with varying water content in sediment or without 527 

sediment. (a) Ingrowth of serpentinite over the course of the model run either considering the cumulative 528 

serpentinite that includes both stable serpentinite and deserpentinized material or the instantaneous amount 529 

that only includes the amount of serpentinite that is stable. (b) Plate convergence rates for different models. 530 

Filled circles denote times when slabtop P-T conditions are plotted in c. (c) Slab P-T profiles at two model 531 

timesteps for the fully saturated and no sediment cases overlain on the pseudosection for pelagic sediment. 532 

 533 



Incoming plates with different amounts of incoming bound water subsequently 534 

release variable amounts of water that migrate into the mantle wedge to produce 535 

serpentinite. The greatest amounts of serpentinite are produced in the fully saturated case, 536 

both for total cumulative serpentinite, which includes deserpentinized material, and 537 

instantaneous serpentinite. In the fully saturated case, there is therefore the most 538 

serpentinite available to lubricate the interface (Figure 5a). The fully saturated and 539 

moderately hydrated cases both produce more serpentinite than the anhydrous case and 540 

the case without a sediment layer. The fully saturated and moderately saturated cases also 541 

reach a quasi-steady state, but the anhydrous (0 wt. %) case and case without sediment do 542 

not (Figure 6a).  543 

In the case without a sediment layer, there is no sediment to insulate the metabasalt 544 

layer at the interface, and so the hydrated metabasalts are directly exposed to the hotter 545 

temperatures in the mantle wedge (Figure S10). As a result, the metabasalts are hotter, 546 

dehydrate more completely, and more cumulative serpentinite is produced in this model 547 

than within the anhydrous case. This case without a sediment layer, however, drags down 548 

more serpentinite, which acts to reduce the volume of stable instantaneous serpentinite in 549 

the wedge to levels comparable to the case with a layer of sediment. There is more 550 

downdragging because the rheology of metabasalts of the oceanic crust follows a strong, 551 

eclogite flow law above ~ 1.5 GPa (i.e. ηeclogite >> ηantigorite), whereas the rheology of 552 

sediments is governed by a weaker, quartz flow law. 553 

As seen in previous numerical subduction models (e.g., Čížková & Bina, 2013; Behr et 554 

al., 2022), a weaker plate interface results in faster convergence rates. However, in this suite 555 

of models, variations in effective plate interface strength result from varying volumes of 556 

weak serpentinite. During subduction infancy, serpentinite begins to accumulate but not in 557 

sufficient volumes to yet exert a lubricating effect: the convergence rates in all models 558 

evolve similarly and are accelerating, although the case without sediment is ~ 0.5 cm/yr 559 

slower at the start of the model because there is no sediment to weaken the interface 560 

(Figure 6b). After the initiation stage, the case with the most incoming water has the highest 561 

degree of serpentinite production and experiences the fastest convergence rates (~ 8 562 

cm/yr), whereas the anhydrous case reaches maximum convergence rates of ~ 6 cm/yr. 563 

Cases with no pelagic sediment only reach a maximum convergence rate of ~ 5 cm/yr and 564 



become locked by the end of the model run (Figure 6b). This locking coincides with an 565 

increase of the interface viscosity by approximately two orders of magnitude (Figure S8) 566 

because serpentinite accumulation that could weaken the interface is relatively low (Figure 567 

5). The variation in slab dip is also linked to differences in the amount of water release and 568 

serpentinite formed (Figures 5, 6a). As the slab without sediment reaches the highly viscous 569 

660 km transition zone, and convergence rates slow to <1 cm/yr, the dip increases 570 

dramatically. Therefore, the ingrowth of weak serpentinite produces slabs with higher 571 

convergence rates and shallower dips, whereas the case with no water has more 572 

downdragging of serpentinite, lower convergence rates, and higher dips. 573 

Thermal state is, in turn, linked to subduction kinematics. The models with faster 574 

convergence rates, due to greater serpentinite volumes and therefore a weaker interface, 575 

have a cooler slabtop due to more rapid downward advection of cold lithospheric plate. In 576 

contrast, the case without sediment and with slow convergence has a warmer slabtop 577 

(Figure 6c) due to feedbacks between serpentinization, interface strength, and convergence 578 

rate.  579 

3.3 Variable Yield Strength 580 

Finally, we test the effect of serpentinite yield strength on model evolution, with 581 

snapshots of the slab morphology for models with serpentinite strength again plotted for 582 

equivalent net plate convergence (Figure 7). We vary yield strength values by adjusting the 583 

effective coefficient of friction μeff from 0.01 to 0.04, above and below the reference value 584 

of 0.02 (Equation 7).  585 

The cumulative amount of serpentinite created over the whole model duration is 586 

approximately equivalent for any amount of convergence regardless of serpentinite 587 

strength (Figure 8a). However, different serpentinite strengths lead to different degrees of 588 

downdragging that impact both the instantaneous serpentinite amounts and hence 589 

convergence rates over time. During the initiation stage (slab depths < 400 km), all models 590 

evolve similarly, with little variation in the downdragging of serpentinite (Figure 8a-b). 591 

However, after the initiation stage, serpentinite retention is very sensitive to serpentinite 592 

strength: weak forearc serpentinites with low friction coefficients are dragged down more 593 

easily than those with high friction coefficients, despite similar cumulative serpentinite 594 



ingrowth. That is, the serpentinite stable at any given time—the instantaneous 595 

serpentinite—is affected by downdragging. At the end of the free sinking phase there is ~ 596 

40% more instantaneous serpentinite in the high friction case (μeff = 0.04) compared to the 597 

case with the weakest yielding parameters (μeff = 0.01; Figure 7). An even higher friction 598 

coefficient of 0.06 was separately tested and, in line with this trend, resulted in the most 599 

serpentinite retention and the least downdragging (Figure S11).  600 

These differences in serpentinite strength, and hence retention and downdragging, are 601 

linked to changes in kinematics and thermal state. The case with the lowest serpentinite 602 

strength reaches maximum convergence rates of nearly 9.4 cm/yr, whereas the strongest 603 

case plotted has maximum convergence rates that are lower by 30% (Figure 8b). Therefore, 604 

even though there is more instantaneous serpentinite in the wedge in the high strength 605 

case, it is the high strength of serpentine, not the abundance, that exerts a larger influence 606 

on kinematics and produces the lower convergence rates. Finally, the lower convergence 607 

rates in the higher strength case produce warmer slab P-T conditions (Figure 8c) because 608 

the slab experiences more diffusive heating from the overlying mantle wedge. This 609 

difference in temperature does not lead to a significant difference in cumulative 610 

serpentinite production because the slab P-T conditions still pass through the same 611 

dehydration reactions (Figure 8c). 612 

 613 



 614 

Figure 7. Snapshots of the subducting plate as a function of friction parameters in serpentinite with all other 615 

parameters identical to the reference model, shown in Figure 3. All cases are plotted at the same timestep, 616 

approximately the time for the subducting plate to reach the transition zone.  617 

 618 

 619 
Figure 8. Kinematic and thermal evolution of models with variable effective friction coefficient of serpentinite. 620 

(a) Ingrowth of serpentinite over the course of the model run either considering the cumulative serpentinite 621 

amount that was created over the duration of the entire model run or the instantaneous amount that indicates 622 

the amount of serpentinite that is stable at any given point in time. The difference between the two is an 623 

indication of the degree of loss of serpentinite due to coupling with the downgoing plate. (b) Changes in 624 

convergence rate for different models as a function of serpentinite strength. Filled circles denote times when 625 

slabtop P-T conditions are plotted in c. (c) The thermal state at two snapshots in time for the strongest and 626 

weakest plotted endmembers of serpentinite strength. 627 



4 Discussion 628 

4.1 Ingrowth of serpentinite 629 

Despite exerting a critical influence on magmatism, seismicity, and the exhumation 630 

of rocks from depth, the mantle wedge remains one of the most enigmatic regions of the 631 

subduction system. In particular, the amount of water bound in hydrous minerals, 632 

particularly serpentinite, is poorly resolved, partly due to the paucity of phase changes in 633 

wedge serpentinites, which complicates efforts to precisely constrain pressure-temperature 634 

(P-T) conditions that those rocks experienced. Unlike many crustal rocks, serpentinites 635 

rarely contain minerals suitable for geochronology. Consequently, constraining the ingrowth 636 

of serpentinites in the mantle wedge, as well as linking them to large-scale subduction 637 

evolution, necessitates alternative approaches, such as geochemical analyses of arc magmas 638 

or serpentinite mud volcanoes, geophysical techniques, and numerical modeling (e.g., 639 

Tatsumi, 1986; Tatsumi & Eggins, 1995; Fryer et al., 1999; Hyndman & Peacock, 2003; Abers 640 

et al., 2017). Linking mineral phase stability calculations in the downgoing plate to 641 

thermomechanical models provides a quantitative framework for evaluating serpentinite 642 

stability and the amount of water released by the slab. Our numerical models expand on 643 

this framework by integrating the thermal state of the downgoing slab to its dewatering 644 

processes, the resulting mantle wedge hydration over time, and subsequent rheological 645 

transformations, thereby complementing petrological and geochemical techniques (e.g., 646 

Scambelluri & Tonarini, 2012). 647 

This work examines the effects of the progressive ingrowth and buildup of 648 

serpentinite in the mantle wedge over the lifetime of a subduction zone (Figures 4-8) within 649 

dynamic models that implicitly contain feedbacks between thermal structure, dehydration, 650 

serpentinite accumulation, and resultant interface strength changes. Extensive geodynamic 651 

and petrological modeling has shown that water released from the downgoing slab hydrates 652 

and serpentinizes the forearc mantle wedge (e.g., Peacock, 1987; Wada & Wang, 2009; 653 

Abers et al., 2017; Condit et al., 2020). These studies have successfully tracked 654 

serpentinization in the context of exhumation, wedge dynamics, magmatism, and/or 655 

decoupling of the downgoing slab from the overriding wedge (Gerya et al., 2002; Arcay et 656 

al., 2005; Nikolaeva et al., 2008; Gerya & Meilick, 2011; Li et al., 2019; Kerswell et al., 2021). 657 



Previous work has already examined some feedbacks caused by serpentinization. For 658 

instance, rapid serpentinization during subduction infancy has been linked to evolving 659 

temperatures in the slab (Epstein et al., 2024), and interface strength has been shown to 660 

modulate both force balances (Lamb & Davis, 2003; Arcay et al., 2005; Gerya et al., 2008) 661 

and plate convergence rates (Conrad & Hager, 1999; Behr & Becker, 2018; Behr et al., 2022). 662 

However, how the time-dependent ingrowth of serpentinites, and thus the development of 663 

a weak interface, feed back into subduction kinematics, such as plate velocities and slab 664 

morphology, was beyond the scope of most previous studies. A select few studies, however, 665 

use dynamic numerical models to explore the impact of mantle hydration-induced 666 

weakening on subduction, but with a weakening and density parameterization not specific 667 

to serpentinization (Nakao et al. 2016, 2018; Ritter et al., 2024). These studies revealed 668 

feedbacks between large-scale kinematics and hydration-induced weakening of the mantle 669 

wedge, a result confirmed by our work, as well as convergence rate slowdowns associated 670 

with buoyancy from abyssal hydration of the downgoing plate. Apart from the above, such 671 

feedbacks are rarely incorporated in detail into dynamic and time-dependent subduction 672 

modeling studies. Instead, many studies typically impose kinematic boundary conditions—673 

usually plate velocities—and hence prevent the progressively accumulating weak 674 

serpentinite from influencing large-scale plate motions. In contrast, our dynamic models 675 

allow plates to evolve freely, capturing key feedbacks between serpentinite rheology, 676 

mantle wedge hydration, and thermal state.  677 

The extent of serpentinization of the mantle wedge over time is a mass balance 678 

between serpentinite ingrowth and loss. Ingrowth of mantle wedge serpentinite depends on 679 

the amount of water released from the downgoing slab, depending on the thermal state. 680 

From the exhumed rock record, slabs are predicted to be warmest during the earliest 681 

phases of subduction, after which they cool down (Platt, 1975; Cloos, 1985; Agard et al., 682 

2018; Penniston-Dorland et al., 2025). In dynamic subduction models, such as presented 683 

herein, this thermal evolution emerges as both slab sinking accelerates and the base of the 684 

cold forearc (i.e., the “decoupling depth”) migrates to greater depths above the slab 685 

(Figures 3-4; cf. Holt & Condit, 2021). Recent work shows that this time-evolving thermal 686 

structure exerts a significant impact on predictions of slab dehydration and mantle forearc 687 

serpentinization (Epstein et al., 2024). Our work finds similar results: initial rates of 688 



serpentinization are fastest during the hot, early stages, when the slab can fully dehydrate, 689 

and before significant volumes of serpentinite have begun to be dragged down into the 690 

deeper mantle. 691 

Serpentinite ingrowth is also strongly influenced by the composition of the 692 

downgoing material that uniquely responds to the P-T conditions it encounters. Hydrated 693 

sediment produces more water that drives serpentinization in the mantle wedge compared 694 

to metagabbros and metabasalts (Figure 5). More serpentinization in sediment-rich models 695 

was originally shown for a sediment with an averaged sediment composition (GLOSS), which 696 

also tends to dehydrate at shallower conditions than metabasalts (Rüpke et al., 2004). 697 

Greater serpentinization extents with more sediment are also consistent with more recent 698 

modeling (Abers et al., 2017; Epstein et al., 2024). Models without sediment result in less 699 

mantle wedge serpentinization because the package of subducting metabasalts on average 700 

contain less water than pelagic sediment (2.3 wt.% vs. 6.89 wt.%) and dehydrate at P-T 701 

conditions outside those of serpentine stability, particularly as the model matures (Figures 702 

5-6). Although other siliciclastic sediment compositions may exhibit different dehydration 703 

patterns, a global assessment of the most common subducting sediment compositions 704 

(Plank & Langmuir, 1998) finds pelagic sediments to be the most prevalent. Non-siliciclastic 705 

compositions, such as carbonate-rich sediments, undergo devolatilization to produce 706 

complex, mixed-volatile fluids, which may further weaken the plate interface (Oyanagi & 707 

Okamoto, 2024), but decarbonation and consideration of high-solute fluids is beyond the 708 

scope of the current work.  709 

Downdragging represents an additional complexity by removing previously 710 

accumulated serpentinite from the mantle wedge. Significant coupling between serpentinite 711 

and the downgoing slab was originally proposed as a mechanism to delay dehydration of 712 

material in or near the slab until it reaches depths necessary for generating hydrous arc 713 

magmas (Tatsumi, 1986). This is also evidenced geochemically by the striking similarity 714 

between forearc serpentinites and arc magmas (Tonarini et al., 2011; Scambelluri et al., 715 

2019). From a mass balance perspective, downdragging would prevent some forearcs from 716 

being oversaturated (Savov et al., 2007; Abers et al., 2017; Epstein et al., 2024). However, 717 

the balance between coupling and downdragging has largely been modeled in the context 718 

of subduction erosion (Angiboust et al., 2012), the formation of a subduction channel 719 



(Schwartz et al., 2001; Gerya et al., 2002; Hilairet & Reynard, 2009; Gerya & Meilick, 2011), 720 

and downdragging of water bound in the mantle (Nakao et al., 2016, 2018). While we only 721 

consider a limited range of serpentinite strengths in our time-dependent models (Figure 7), 722 

our results agree with more extensive targeted modeling demonstrating that serpentinite 723 

downdragging depends on serpentinite rheology (Douglas et al., 2023). We find that cases 724 

with low effective friction coefficients (0.01) have ~ 2× more cumulative serpentinite than is 725 

currently stable as instantaneous serpentinite, while the high friction case (0.04) has only ~ 726 

35% more cumulative serpentinite (values extracted at the timesteps with maximum 727 

convergence rates). Nonetheless, a rheologically weak layer of serpentinite ~ 5 kilometers 728 

thick above the downgoing slab forms and stabilizes within our models with sediment, 729 

which is broadly consistent with, for example, recent seismological estimates using receiver 730 

functions in Cascadia (Figure S8; Audet et al., 2025). 731 

4.2 Effects of serpentinite ingrowth on plate kinematics 732 

The potential link between slab fluid release, interface strength, and hence 733 

subducting plate deformation was first recognized during the plate tectonics revolution. 734 

Studies noted that mineralogically-bound volatiles would be liberated during subduction 735 

and weaken the plate interface (Isacks et al., 1968; Isacks & Molnar, 1971). A weakening of 736 

the interface affects the stress state along the interface and thus the overall subduction 737 

zone force balance over both long and short timescales (e.g., King & Hager, 1990; Conrad & 738 

Hager, 1999; Behr & Becker, 2018; Julve et al., 2024).  739 

 740 



 741 

Figure 9. Summary of evolutionary feedback in our numerical results. The ingrowth of serpentinite reduces 742 

shear stress along the plate interface, changing plate convergence rates, which in turn can change the thermal 743 

state over time. All three processes are interconnected and can accentuate the influence of weak, hydrated 744 

subducting lithologies, such as sediment, on plate speeds. Shaded regions in the free sinking/mature phase 745 

correspond to regions of active serpentinization. 746 

 747 

An array of processes may lubricate the plate interface, thereby reducing interface 748 

shear resistance, and, in turn, elevating plate speeds. In particular, the interface may be 749 

lubricated by sediment or ingrowing serpentinite. However, unlike sediment (Lamb, 2006; 750 

Pusok et al., 2021; Behr et al., 2022) or mantle wedge hydration (Arcay et al., 2005; Wada & 751 

Wang, 2009; Gerya & Meilick, 2011; Nakao et al., 2016, 2018; Ritter et al., 2024), the direct 752 

impact of interface/wedge serpentinization on plate evolution has rarely been explicitly 753 

examined in fully dynamic models. In our models, serpentinite accumulation elevates 754 

convergence rates after subduction infancy as, during the earliest phase, weak serpentinite 755 

has not yet accumulated to sufficient degrees to significantly reduce the interface stress 756 

state. However, during the following free-sinking phase, greater volumes of weak 757 

serpentinite have accumulated, causing reduced shear stresses along the interface and thus 758 

faster convergence rates (Figure 5). Therefore, in our models, sediments weaken the 759 

interface by both reducing the in-situ strength of the interface, as previously shown, and by 760 



releasing water and weakening the interface further via the progressive formation of weak 761 

serpentinite. Instantaneous serpentinite increases by 20-40 % during the mature and free 762 

sinking phases, compared to subduction infancy, and so the associated convergence rate 763 

increase is similarly time dependent (Figure 9). 764 

A weaker interface has also been linked to the formation of a subduction channel 765 

(Shreve & Cloos, 1986) which, when dominated by buoyant serpentinite, may aid the 766 

exhumation of negatively buoyant lithologies, such as eclogites, from mantle depths (e.g., 767 

Schwartz et al., 2001; Gerya et al., 2002). Because we find time-dependent ingrowth of 768 

serpentinite, we expect that the ability for a serpentinite or serpentinite-dominated 769 

subduction channel to entrain and exhume other lithologies may also be time-dependent. 770 

As subduction matures, the progressive ingrowth of serpentinite weakens the interface 771 

more, meaning that return flow in a serpentinized subduction channel might be a more 772 

viable mechanism of exhumation after subduction reaches maturity and when the slabtop 773 

temperatures are generally lower than earlier stages. However, we do not observe large-774 

scale exhumation in our models: additional mechanisms such as extensive surface erosion, 775 

greater channel buoyancy, or plate velocity changes (cf. England & Richardson, 1977; Ring et 776 

al., 1999; England & Smye, 2023) are likely needed.  777 

Serpentinite is expected to be common along the plate interface, and therefore we 778 

expect that interface weakening is also tied to water release from hydrated lithologies, such 779 

as sediments, instead of inherently weak lithologies alone. A specific comparison to plate 780 

speeds is challenging because of other factors that affect subduction that include plate age, 781 

plate and trench geometry, overriding plate deformation, and forces associated with mantle 782 

flow (e.g., Isacks et al., 1968; Lallemand et al., 2005; Ueda et al., 2008; Jagoutz et al., 2015).  783 

4.3 Model limitations and assumptions 784 

Because we target the first-order impacts of serpentinization on subduction 785 

dynamics, and vice versa, some model simplification is necessary. The first set of 786 

assumptions pertains to initial conditions, model geometry, and numerical limitations. For 787 

example, model resolution modestly impacts the absolute quantities of serpentinite 788 

generated in the wedge. The current maximum model resolution is ~ 1.3 km; increasing 789 

model resolution to 0.7 km increases instantaneous serpentinization by up to 15%, but the 790 



first-order trends are unchanged (Figure S12). Additionally, we impose a maximum 791 

decoupling depth of 200 km by stiffening the crust (to the viscosity of the background 792 

mantle) at this depth. While this does not impact subduction zone thermal structure during 793 

the earlier subduction phases—during which the lower limit of the cold forearc much 794 

shallower—the incorporation of self-consistent, shallower decoupling depth would likely 795 

make the slabtop temperatures warmer (> 30 Myr; Figure 4) and hence more compatible 796 

with mantle melting, arc volcanism, and surface heat flow during the mature phase (e.g., 797 

Furukawa, 1993; Wada and Wang, 2009). Finally, shear heating, not considered here, would 798 

also increase the slabtop temperature (e.g., Gao & Wang, 2014; Peacock, 1992; Penniston-799 

Dorland et al., 2015; England & Smye, 2023) and may increase dehydration and 800 

serpentinization extents (Hernández-Uribe & Palin, 2019). 801 

Care must also be taken in interpreting our models and others that make similar 802 

simplifying assumptions about the treatment of fluid flow and serpentinization. Free water 803 

is assumed to migrate directly upwards relative to the surrounding matrix, as is common in 804 

subduction modeling studies (e.g., Magni et al., 2014; Menant et al., 2019). However, 805 

channelization in the wedge or slab interface is possible as suggested by stable isotope and 806 

trace element arguments from former interface units that have since been exhumed (e.g., 807 

Bebout & Penniston-Dorland, 2016; Epstein et al., 2021) and modeling studies with porous 808 

fluid flow (Wilson et al., 2014; Cerpa & Wada, 2025). This assumption may impact the 809 

absolute quantities of serpentinite that our models predict. For example, after 50 Myr, our 810 

models predict the ingrowth of ~ 20% of instantaneous serpentinite of the Epstein et al. 811 

(2024) models, which assume perfect vertical transfer of fluids. Additionally, the hydration 812 

process we chose is designed to be conservative by requiring that 100% of a cell be 813 

serpentinized before any higher cells are affected, as suggested by the presence of H2O 814 

being the primary limiting factor to serpentinization (Peacock, 1987). Upward-migrating 815 

swarms of earthquakes—likely indicating channelized fluid migration—suggest that not all 816 

fluid is immediately bound through reaction with peridotite upon reaching the wedge, and 817 

partial serpentinization is possible (Davies, 1999; Halpaap et al., 2019).  818 

We rely on a closed-system, equilibrium thermodynamic model to determine fluid 819 

release and flow laws during progressive subduction. Such models do not account for 820 

reaction overstepping, and are calculated in a closed system domain for all chemical 821 



components other than H2O. Kinetic limitations to reactions shown by field studies, (e.g., in 822 

exhumed wedge serpentinite: Peacock, 1987; in eclogite: Putnis and Austrheim, 2010) are 823 

not taken into account, and may influence the thermal-rheologic feedbacks. The assumption 824 

of a closed system for non-volatile components means that the initial composition has a 825 

significant control on dehydration systematics. For example, we assume the downgoing 826 

sediments are pelagic. Non-siliciclastic compositions, such as carbonate-rich sediments, 827 

undergo devolatilization to produce complex, mixed-volatile fluids, which may further 828 

weaken the plate interface (Oyanagi & Okamoto, 2024). Lastly, and, perhaps most 829 

important, we cannot model melt transport or fluid-induced metasomatic (i.e., open-830 

system) reactions. Though weak hydrous minerals generated by metasomatism (Behnsen & 831 

Faulkner, 2012; Lindquist et al., 2023), such as talc and chlorite (Peacock & Wang, 2021; 832 

Codillo et al., 2022; Oyanagi and Okamoto, 2024; Easthouse et al., 2025; Klein & Behn, 2025) 833 

are potentially less abundant than serpentine, they are considerably weaker than 834 

serpentine and may therefore exert a significant effect on plate strength. Overall, interface 835 

strength, plate speeds, and slab temperatures will evolve as weak, hydrous lithologies 836 

accumulate along the interface (Figure 9).  837 

5 Conclusions 838 

This study tracks serpentine buildup in the mantle wedge during subduction to 839 

reveal feedbacks between slab dehydration/forearc hydration, plate kinematics, 840 

dehydration, and slab thermal state over time. Feedbacks are included by allowing plate 841 

geometries and velocities to evolve freely within dynamic models, thereby capturing the 842 

highly time-dependent effects of serpentinization on large-scale subduction. Our models 843 

suggest: 844 

1) As the downgoing plate dehydrates, the mantle wedge is progressively serpentinized 845 

over the lifetime of a subduction zone.  846 

2) Serpentinite accumulation is modulated by the balance between wedge hydration 847 

and downdragging along the interface due to coupling with the downgoing plate.  848 

3) Serpentinite ingrowth elevates subduction zone convergence rates because it 849 

weakens the plate interface. This is particularly pronounced during the intermediate-850 



to-mature phases of subduction, after sufficient serpentinite has accumulated and 851 

reduced the interface strength.  852 

4) Exhumation of serpentinites may be favored after subduction infancy, i.e. once a 853 

sufficient quantity of serpentinite has accumulated in the mantle wedge. 854 

Our work links two previously proposed hypotheses in subduction zone evolution: 855 

weakening of the interface due to the subduction of sediments and weakening of the 856 

interface due to the ingrowth of hydrous minerals. The lubricating effect of serpentinite 857 

likely acts in concert with that of subducted sediments, especially during the intermediate-858 

to-mature phases of subduction.  859 
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